

GUÍA DOCENTE

DESARROLLO E INTEGRACIÓN DE SOLUCIONES DE REALIDAD VIRTUAL

MÁSTER UNIVERSITARIO EN COMPUTACIÓN GRÁFICA, REALIDAD VIRTUAL Y SIMULACIÓN

MODALIDAD: PRESENCIAL

CURSO ACADÉMICO: 2023-2024

Denominación de la asignatura:	Desarrollo e Integración de Soluciones de Realidad Virtual
Titulación:	MÁSTER UNIVERSITARIO EN COMPUTACIÓN GRÁFICA, REALIDAD VIRTUAL Y SIMULACIÓN
Facultad o Centro:	Centro Universitario de Tecnología y Arte Digital
Materia:	Realidad Virtual y Simulación
Curso:	Primero
Cuatrimestre:	Primero
Carácter:	Obligatoria
Créditos ECTS:	3
Modalidad/es de enseñanza:	Presencial
Idioma:	Castellano
Profesor/a - email	David Pinto Fernández/david.pinto@u-tad.com
Página Web:	http://www.u-tad.com/

DESCRIPCIÓN DE LA ASIGNATURA

Descripción de la materia

Esta materia hace referencia al aprendizaje de técnicas inmersivas de programación con dispositivos de realidad virtual, algoritmos de simulación, de efectos visuales. En esta materia, el alumno aprende la aplicación de la computación gráficas en dos áreas de conocimiento como la simulación basada en físicas y los mundos virtuales. Resulta una materia esencial en el Máster Universitario, ya que es donde el alumno adquiere su especialización en Simulación de efectos o en Realidad Virtual, partes esenciales del postgrado.

Descripción de la asignatura

En esta asignatura, el alumno profundizará en el desarrollo de la Realidad Virtual (incluidos dispositivos autónomos como Meta Quest o Pico) a través del motor Unity.

Se familiarizará con las técnicas principales de depuración, testeo y distribución de aplicaciones de Realidad Virtual. Aprenderá nociones de diseño funcional y experiencia de usuario específicas de Realidad Virtual. Trabajará en la inclusión de sonido en mundos virtuales, así como la integración de videos y características especiales en entornos de VR. Aprenderá a desarrollar aplicaciones de Realidad Virtual multijugador y a conectar avatares remotos con seguimiento de Realidad Virtual. Así mismo, se tratará la forma de construir

estas aplicaciones con una arquitectura limpia y modular, que permita un escalado robusto a proyectos de más envergadura.

Con clases participativas, teóricas y prácticas, el alumno alcanzará los objetivos de profundizar en el sector de la Realidad Virtual.

COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

Competencias básicas

- CG5 Capacidad para la aplicación de soluciones innovadoras y la realización de avances en el conocimiento que exploten los nuevos paradigmas de la Computación Gráfica
- CG6 Capacidad para la realización de modelados matemáticos, cálculo y diseño experimental en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación e innovación en todos los ámbitos de la programación gráfica
- CG7 Capacidad para la integración de conocimientos y para la formulación de juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
- CG8 Capacidad para las labores de coordinación y gestión técnica de proyectos de investigación, desarrollo e innovación, en empresas y centros tecnológicos, en el ámbito de la Computación Gráfica, la Simulación y la Realidad Virtual.
- CG9 Capacidad para la aplicación de los conocimientos adquiridos y para resolver problemas en entornos complejos, nuevos o poco conocidos en contextos amplios y multidisciplinares, siendo capaces de integrar estos conocimientos
- CG2 Capacidad para la aplicación del método científico en el estudio y análisis de fenómenos y sistemas en diversos ámbitos de la Informática, así como en la concepción, diseño y ejecución de soluciones informáticas innovadoras y originales.
- CG3 Capacidad para la ampliación de conocimientos de un modo que habrá de ser en gran medida autodirigido o autónomo. Capacidad para la obtención de información sobre las tendencias actuales en el campo de la simulación y la programación gráfica, y las comunidades y foros donde obtener información actualizada

Competencias específicas

- CE15 Capacidad para el empleo de los estándares de visualización 2D y 3D de la industria digital para la presentación interactiva de una simulación gráfica
- CE16 Conocimiento de los métodos empleados para la simulación de fenómenos dinámicos como la interacción entre cuerpos, los fluidos, partículas, etc. y su implementación computacional

CONTENIDO

En esta asignatura se dotará al alumno de los conocimientos necesarios para el modelado y modelización de un espacio de realidad virtual, así como los mecanismos optimizados orientados la interacción virtual en dicho espacio. Se establecerán la definición de base de datos de un sistema visual para pasar a continuación a su estructuración y agrupación estratégica constituyendo un grafo de escena optimizado. Los conceptos teóricos estudiados se seguirán ampliando a través de la utilización de librerías Open Source orientadas a la Realidad Virtual como OSG (OpenSceneGraph). Además se verán los distintos mecanismos para la interacción entre un espacio real y un espacio virtual complementado su estudio con el análisis de las diversas soluciones de hardware existentes actualmente en el mercado.

TEMARIO

Tema 1. Implementación de métodos de locomoción avanzados en Realidad Virtual: Teleport, gamepad, Room Scale. Interacción en Realidad Virtual. Handtracking, interacción de manos virtuales. Comienzo de la práctica de la asignatura. Tema 2. Optimización en Realidad Virtual standalone. Técnicas de optimización gráfica. Depuración, profiling y análisis del rendimiento de las aplicaciones. Tema 3. Desarrollo multijugador en Realidad Virtual. Avatares en Realidad Virtual. Implementación de una aplicación de Realidad Virtual multijugador. Tema 4. Ingeniería del Software para Realidad Virtual: arquitectura limpia y buenas prácticas para escalar proyectos de forma modular. Arquitectura basada en scriptable objects.

ACTIVIDADES FORMATIVAS Y METODOLOGÍAS DOCENTES

Actividades formativas

Actividad Formativa	Horas totales	Presencialidad
Clases teóricas / Expositivas	22,5	100
Clases Prácticas	7,5	100
Tutorías	5,50	100
Estudio independiente y trabajo autónomo del alumno	30	10
Elaboración de trabajos (en grupo o individuales)	7,5	30
Actividades de Evaluación	2	100
TOTAL	75	

DESARROLLO TEMPORAL

Tema 1 Diciembre

Tema 2 Diciembre

Tema 3 Diciembre / Enero

Tema 4 Enero

SISTEMA DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	VALORACIÓN MÍNIMA RESPECTO A LA CALIFICACIÓN FINAL (%)	VALORACIÓN MÁXIMA RESPECTO A LA CALIFICACIÓN FINAL (%)
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	20
Evaluación de trabajos, proyectos, informes, memorias	40	80
Prueba Objetiva	10	50

CRITERIOS ESPECÍFICOS DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	CONVOCATORIA ORDINARIA	CONVOCATORIA EXTRAORDINARIA
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	10
Evaluación de trabajos, proyectos, informes, memorias	40	40
Prueba Objetiva	50	50

Consideraciones generales acerca de la evaluación

La prueba objetiva final se compondrá del proyecto a entregar, junto con un video donde el alumno explicará lo realizado. El alumno debe activar la webcam para el video. Adicionalmente, la prueba objetiva deberá defenderse ante el profesor. Contará un 50% y debe obtenerse un 5 en la prueba objetiva para hacer media.

El alumno contará con una Convocatoria Ordinaria y Extraordinaria para la entrega de todas sus evaluaciones.

La prueba objetiva final se compondrá del proyecto a entregar, junto con un video donde el alumno explicará lo realizado. El alumno debe activar la webcam para el video. Adicionalmente, la prueba objetiva deberá defenderse ante el profesor. Contará un 50% y debe obtenerse un 5 en la prueba objetiva para hacer media.

El alumno contará con una Convocatoria Ordinaria y Extraordinaria para la entrega de todas sus evaluaciones.

BIBLIOGRAFÍA / WEBGRAFÍA

Bibliografía básica (1-3 libros)

Learning C# Programming with Unity 3D. Alex Okita.

Manual de Unity.

https://docs.unity3d.com/es/current/Manual/index.html

Learning C# by Developing Games with Unity

Unity Virtual Reality Projects

"Design, Develop and Deploy for VR". https://learn.unity.com/course/oculus-vr

"Introduction to VR Development in Unity".

https://learn.unity.com/project/introduction-to-vr-development-in-unity

Bibliografía recomendada (Max 10 libros)

Ready Player One. Ernest Cline. Editorial Crown Publishers.

The History of the Future: Oculus, Facebook, and the Revolution That Swept Virtual

Reality. Blake J. Harris

Snow Crash. Neal Stephenson

Hamlet en la Holocubierta. El futuro de la narrativa en el ciberespacio. Janet H. Murray.

MATERIALES, SOFTWARE Y HERRAMIENTAS NECESARIAS

Tipología del aula

Aula de nuevo modelo tecnológico

Materiales:

Materiales del aula:

- Equipo de proyección y pizarra.
- Internet.
- Pizarra

Material del alumno:

Gafas de Realidad Virtual Móvil / Standalone

Software:

Unity Editor 2021.3.3f1

Visual Studio 2019

Android Studio