

GUÍA DOCENTE

FÍSICA E INTELIGENCIA ARTIFICIAL PARA VIDEOJUEGOS

GRADO EN INGENIERÍA DEL SOFTWARE

MODALIDAD: PRESENCIAL

CURSO ACADÉMICO: 2023-2024

Denominación de la asignatura:	Física e Inteligencia Artificial para Videojuegos
Titulación:	Ingeniería del Software
Facultad o Centro:	Centro Universitario de Tecnología y Arte Digital
Materia:	Programación Gráfica, Sistemas Inmersivos y Videojuegos
Curso:	3º
Cuatrimestre:	2
Carácter:	OBM
Créditos ECTS:	6
Modalidad/es de enseñanza:	Presencial
Idioma:	Castellano
Profesor/a - email	Beatriz Martinez Pabon / beatriz.pabon@u-tad.com Javier Alegre Landaburu / javier.alegre@u-tad.com
Página Web:	http://www.u-tad.com/

DESCRIPCIÓN DE LA ASIGNATURA

Descripción de la materia

La materia dota a los alumnos de las competencias y conocimientos necesarios para el desarrollo de experiencias interactivas como los videojuegos, inmersivas como las propias de la realidad virtual o realidad aumentada y la generación de gráficos a través

Descripción de la asignatura

Esta asignatura hace referencia al estudio y práctica del conjunto de conceptos fundamentales que asientan los cimientos de desarrollo de videojuegos desde la vertiente de tecnología, programación y física.

El objetivo de este curso es sentar las bases de la física, incluyendo las bases de la cinemática y la dinámica de los sólidos, así como de la mecánica de fluidos, de forma que se comprendan sus principios de cara a su implementación en el desarrollo de videojuegos; también se relacionan estos conceptos con algunos elementos básicos de inteligencia artificial, como los agentes inteligentes y los sistemas de toma de decisiones.

COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

Competencias (genéricas, específicas y transversales)

COMPETENCIAS BÁSICAS Y GENERALES

CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4: Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

CG1: Entender, planificar y resolver problemas a través del desarrollo de soluciones informáticas.

CG3: Aplicar los fundamentos científicos para la resolución de problemas informáticos

CG4: Entender la complejidad, simplificar y optimizar los sistemas informáticos

CG9: Aprender, modificar y producir nuevas tecnologías informáticas

CG10: Aplicar las técnicas creativas para la realización de proyectos informáticos

COMPETENCIAS ESPECÍFICAS

CE10: Generar documentación de una aplicación de forma automática así como entender y manejar adecuadamente un gestor de versiones de código

COMPETENCIAS TRANSVERSALES

CT1: Conocer la definición y el alcance, así como poner en práctica los fundamentos de las metodologías de gestión de proyectos de desarrollo tecnológico.

CT2: Conocer los principales agentes del sector y el ciclo de vida completo de un proyecto en desarrollo y comercialización de contenidos digitales

CT4: Actualizar el conocimiento adquirido en el manejo de herramientas y tecnologías digitales en función del estado actual del sector y de las tecnologías empleadas.

Resultados de aprendizaje

Al acabar la titulación, el graduado o graduada será capaz de:

- Conocer las posibilidades de la tecnología y las restricciones que impone en la construcción de videojuegos.
- Conocer la sintaxis y uso básico de los lenguajes de programación indicados para el diseño de videojuegos
- Implementar programas sencillos acompañados de baterías sencillas de pruebas
- Desarrollar juegos simples en lenguajes de scripting
- Manejar los conceptos de diseño 2D en la elaboración de un juego
- Aplicar el conocimiento de diseño de juegos a la construcción de un juego 3D básico
- Ser capaz de usar técnicas específicas de programación gráfica que permiten escribir código más eficiente.
- Entender el pipeline de producción gráfica, sus etapas, reglas y monitorización.
- Conocer y aplicar las soluciones más comunes para el renderizado de escenas digitales en la industria.
- Aprender a desarrollar soluciones en distintos mundos inmersivos dentro del continuo de la virtualidad.
- Aprender desarrollar aplicaciones y experiencias de realidad aumentada y mixta, potenciando sus características utilizando los distintos entornos software
- disponibles.
- Ser capaz de integrar los desarrollos software con los dispositivos de AR/VR.
- Asimilar los algoritmos de simulación numérica para generar imágenes fotorrealistas.
- Utilizar la API de OpenGL para la representación de vértices, aristas y superficies en el espacio tridimensional.
- Ser capaz de diseñar aplicaciones con algoritmos concurrentes, ejecutables en paralelo en hardware gráfico especial
- Diseñar, desarrollar y desplegar un proyecto completo de computación gráfica, AR/VR o videojuegos utilizando las técnicas adquiridas en esta mención.

CONTENIDO

Cinemática directa e inversa

Interpolación de movimiento

Detección de colisiones en Solidos-Rígidos

Dinámica de fluidos computacional

Aplicación de la IA en videojuegos

Agentes Inteligentes

Sistemas de Toma de Decisiones

TEMARIO

Bloque I: Física

Tema 0: Conceptos básicos

Tema 1: Cinemática

Tema 2: Dinámica de la Partícula

Tema 3: Energía y Colisiones

Tema 4: Dinámica del Sólido Rígido

Tema 5: Introducción a la Mecánica de Fluidos

Bloque II: Inteligencia Artificial

Tema 6: Steering Behaviours

Tema 7: Decision Tree, State Machine

Tema 8: Behaviour Tree

Tema 9: Lógica Difusa

Tema 10: A*

Tema 11: MinMax

ACTIVIDADES FORMATIVAS Y METODOLOGÍAS DOCENTES

Actividades formativas

Actividad Formativa	Horas totales	Horas presenciales
Clases teóricas / Expositivas	29,38	29,38
Clases Prácticas	23,25	23,25
Tutorías	4,00	0,00
Estudio independiente y trabajo autónomo del alumno	50,00	0,00
Elaboración de trabajos (en grupo o individuales)	31,88	0,00
Actividades de Evaluación	5,25	5,25
Seguimiento de Proyectos	6,25	6,25

TOTAL	150	64,13
-------	-----	-------

Metodologías docentes

Método expositivo o lección magistral

Aprendizaje de casos

Aprendizaje basado en la resolución de problemas

Aprendizaje basado en proyectos

Aprendizaje cooperativo o colaborativo

Aprendizaje por indagación

Metodología Flipped classroom o aula invertida

Gamificación

Just in time Teaching (JITT) o aula a tiempo

Método expositivo o lección magistral

Método del caso

Aprendizaje basado en la resolución de problemas

Aprendizaje basado en proyectos

Aprendizaje cooperativo o colaborativo

Aprendizaje por indagación

Metodología flipped classroom o aula invertida

Gamificación

DESARROLLO TEMPORAL

UNIDADES DIDÁCTICAS / TEMAS PERÍODO TEMPORAL

Tema 0: Conceptos básicos Semana 1

Tema 1: Cinemática Semanas 2-3

Tema 2: Dinámica de la partícula Semana 4-5

Tema 3: Energía y Colisiones Semana 6

Tema 4: Dinámica del Sólido Rígido Semana 7-8

Tema 5: Introducción a la Mecánica de Fluidos Semanas 9-10

Tema 6: Steering Behaviour Semana 11

Tema 7: Descision Tree, State Machine Semana 12

Tema 8: Behaviour Tree Semana 13

Tema 9: Lógica Difusa Semana 14

Tema 10: A* Semana 14

Tema 11: MinMax Semana 15

SISTEMA DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	VALORACIÓN MÍNIMA RESPECTO A LA CALIFICACIÓN FINAL (%)	VALORACIÓN MÁXIMA RESPECTO A LA CALIFICACIÓN FINAL (%)
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	30
Evaluación de trabajos, proyectos, informes, memorias	40	80
Prueba Objetiva	10	60

CRITERIOS ESPECÍFICOS DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	CONVOCATORIA ORDINARIA	CONVOCATORIA EXTRAORDINARIA
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	10
Evaluación de trabajos, proyectos, informes, memorias	55	55
Prueba Objetiva	35	35

Consideraciones generales acerca de la evaluación

- El alumno deberá entregar y aprobar con nota de cuatro sobre diez cada uno de los trabajos evaluables. La media de dichos trabajos debe ser superior a 5. Contarán un 55% de la nota final.
- El alumno deberá aprobar el examen final (parte de física) con nota de cuatro sobre diez. Contará un
 35% de la nota final.
- Para aprobar la asignatura la calificación media debe ser igual o superior a 5 sobre 10.
- En la convocatoria extraordinaria se mantendrán estos mismos criterios, tanto en cuanto a los pesos de cada prueba como en cuanto a los requisitos mínimos. La recuperación del examen final se realizará en la fecha indicada para la convocatoria extraordinaria. Para la recuperación de trabajos y proyectos el alumno se deberá remitir a las instrucciones específicas indicadas por el profesor según la actividad a recuperar.

BIBLIOGRAFÍA / WEBGRAFÍA

Bibliografía básica

- Physics for Game Programmers. Grant Palmer. Apress, 2005. ISBN: 978-1590594728.
- Física I, Paul A. Tipler. Editorial Reverté. ISBN: 8429143661.
- García Serrano, Alberto. Inteligencia artificial. Fundamentos, prácticas y aplicaciones. Ed. Grupo RC.
- Getting Started with Processing. Casey Reas and Ben Fry. Published June 2010,

O'Reilly Media.

Bibliografía recomendada

- Physics for Game Developers: Science, math, and code for realistic effects. David M Bourg and Bryan Bywalec. 2013. 2ªed. 978-1449392512.
- https://unity.com/products/machine-learning-agents
- https://learn.unity.com/course/artificial-intelligence-for-beginners

MATERIALES, SOFTWARE Y HERRAMIENTAS NECESARIAS

Tipología del aula

Aula teórica

Equipo de proyección y pizarra

Materiales:

Se recomienda que el alumno traiga su ordenador y cascos.

Conexión a Internet.

Software:

Unity