

GUÍA DOCENTE

PROGRAMACIÓN DE VIDEOJUEGOS GRADO EN INGENIERÍA DEL SOFTWARE

MODALIDAD: PRESENCIAL

CURSO ACADÉMICO: 2023-2024

Denominación de la asignatura:	Programación de Videojuegos
Titulación:	Ingeniería del Software
Facultad o Centro:	Centro Universitario de Tecnología y Arte Digital
Materia:	Programación Gráfica, Sistemas Inmersivos y Videojuegos
Curso:	3º
Cuatrimestre:	1
Carácter:	OBM
Créditos ECTS:	6
Modalidad/es de enseñanza:	Presencial
Idioma:	Castellano
Profesor/a - email	Javier Alegre Landaburu / javier.alegre@u-tad.com
Página Web:	http://www.u-tad.com/

DESCRIPCIÓN DE LA ASIGNATURA

Descripción de la materia

La materia dota a los alumnos de las competencias y conocimientos necesarios para el desarrollo de experiencias interactivas como los videojuegos, inmersivas como las propias de la realidad virtual o realidad aumentada y la generación de gráficos a través

Descripción de la asignatura

La asignatura Programación de Videojuegos se centra en el desarrollo de aplicaciones interactivas y lúdicas utilizando diferentes herramientas del motor de desarrollo Unity. Los alumnos aprenderán los conceptos básicos de la programación orientada a objetos, el diseño de interfaces gráficas, la gestión de recursos y eventos, y la implementación de algoritmos y estructuras de datos específicos para videojuegos. La asignatura también aborda aspectos como la optimización del rendimiento, la depuración y la documentación del código

COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

Competencias (genéricas, específicas y transversales)

COMPETENCIAS BÁSICAS Y GENERALES

CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4: Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

CG1: Entender, planificar y resolver problemas a través del desarrollo de soluciones informáticas.

CG3: Aplicar los fundamentos científicos para la resolución de problemas informáticos

CG4: Entender la complejidad, simplificar y optimizar los sistemas informáticos

CG9: Aprender, modificar y producir nuevas tecnologías informáticas

CG10: Aplicar las técnicas creativas para la realización de proyectos informáticos

COMPETENCIAS ESPECÍFICAS

CE10: Generar documentación de una aplicación de forma automática así como entender y manejar adecuadamente un gestor de versiones de código

COMPETENCIAS TRANSVERSALES

CT1: Conocer la definición y el alcance, así como poner en práctica los fundamentos de las metodologías de gestión de proyectos de desarrollo tecnológico.

CT2: Conocer los principales agentes del sector y el ciclo de vida completo de un proyecto en desarrollo y comercialización de contenidos digitales

CT4: Actualizar el conocimiento adquirido en el manejo de herramientas y tecnologías digitales en función del estado actual del sector y de las tecnologías empleadas.

Resultados de aprendizaje

Al acabar la titulación, el graduado o graduada será capaz de:

- Conocer las posibilidades de la tecnología y las restricciones que impone en la construcción de videojuegos.

- Conocer la sintaxis y uso básico de los lenguajes de programación indicados para el diseño de videojuegos
- Implementar programas sencillos acompañados de baterías sencillas de pruebas
- Desarrollar juegos simples en lenguajes de scripting
- Manejar los conceptos de diseño 2D en la elaboración de un juego
- Aplicar el conocimiento de diseño de juegos a la construcción de un juego 3D básico
- Ser capaz de usar técnicas específicas de programación gráfica que permiten escribir código más eficiente.
- Entender el pipeline de producción gráfica, sus etapas, reglas y monitorización.
- Conocer y aplicar las soluciones más comunes para el renderizado de escenas digitales en la industria.
- Aprender a desarrollar soluciones en distintos mundos inmersivos dentro del continuo de la virtualidad.
- Aprender desarrollar aplicaciones y experiencias de realidad aumentada y mixta, potenciando sus características utilizando los distintos entornos software
- disponibles.
- Ser capaz de integrar los desarrollos software con los dispositivos de AR/VR.
- Asimilar los algoritmos de simulación numérica para generar imágenes fotorrealistas.
- Utilizar la API de OpenGL para la representación de vértices, aristas y superficies en el espacio tridimensional.
- Ser capaz de diseñar aplicaciones con algoritmos concurrentes, ejecutables en paralelo en hardware gráfico especial
- Diseñar, desarrollar y desplegar un proyecto completo de computación gráfica, AR/VR o videojuegos utilizando las técnicas adquiridas en esta mención.

CONTENIDO

Diseño y desarrollo en motores de videojuegos

Arquitectura de juegos: flujo de juego y componentes del sistema

Técnicas de prototipado rápido

Uso de APIS específicas: matemáticas, audio, video, gráficas, interfaz.

Aplicación de videojuegos multiplataforma

TEMARIO

Tema 0: Scripting y motores de videojuegos

Tema 1: Introducción a Unity y Ejercicio Tenis

Tema 2: Físicas en Unity

Tema 3: Organización de código

Tema 4: Jugador, armas e ítems

Tema 5: El enemigo (Movimiento)

Tema 6: El enemigo (Maquinas de Estado y animaciones)

Tema 7 El juego

Tema 8: ScriptableObjects

Tema 9: Herramientas

Tema 10: Salvado y carga de datos de juego

ACTIVIDADES FORMATIVAS Y METODOLOGÍAS DOCENTES

Actividades formativas

Actividad Formativa	Horas totales	Horas presenciales
Clases teóricas / Expositivas	29,38	29,38
Clases Prácticas	23,25	23,25
Tutorías	4,00	0,00
Estudio independiente y trabajo autónomo del alumno	50,00	0,00
Elaboración de trabajos (en grupo o individuales)	31,88	0,00
Actividades de Evaluación	5,25	5,25
Seguimiento de Proyectos	6,25	6,25
TOTAL	150	64,13

Metodologías docentes

Método expositivo o lección magistral

Aprendizaje de casos

Aprendizaje basado en la resolución de problemas

Aprendizaje basado en proyectos

Aprendizaje cooperativo o colaborativo

Aprendizaje por indagación

Metodología Flipped classroom o aula invertida

Gamificación

Just in time Teaching (JITT) o aula a tiempo

Método expositivo o lección magistral

Método del caso

Aprendizaje basado en la resolución de problemas

Aprendizaje basado en proyectos

Aprendizaje cooperativo o colaborativo

Aprendizaje por indagación

Metodología flipped classroom o aula invertida

Gamificación

DESARROLLO TEMPORAL

UNIDADES DIDÁCTICAS / TEMAS SEMANAS

Tema 0: Scripting y motores de videojuegos

1

Tema 1: Introducción a Unity y Ejercicio Tenis

2

Tema 2: Físicas en Unity

3

Tema 3: Organización de código

4

Tema 4: Jugador, armas e ítems

5, 6

Tema 5: El enemigo (Movimiento)

7

Tema 6: El enemigo (Maquinas de Estado y animaciones)

8, 9

Tema 7: El juego

10, 11

Tema 8: ScriptableObjects

12

Tema 9: Herramientas 13

Tema 10: Salvado y carga de datos de juego 14, 15

SISTEMA DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	VALORACIÓN MÍNIMA RESPECTO A LA CALIFICACIÓN FINAL (%)	VALORACIÓN MÁXIMA RESPECTO A LA CALIFICACIÓN FINAL (%)
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	30
Evaluación de trabajos, proyectos, informes, memorias	40	80
Prueba Objetiva	10	60

CRITERIOS ESPECÍFICOS DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	CONVOCATORIA ORDINARIA	CONVOCATORIA EXTRAORDINARIA
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	10
Evaluación de trabajos, proyectos, informes, memorias	40	40
Prueba Objetiva	50	50

Consideraciones generales acerca de la evaluación

Convocatoria ordinaria

- Entregar tarde una práctica conlleva una reducción de la nota (la nota origina dividida entre 2).
- Es obligatorio realizar todas las prácticas con todos sus entregables.
- Es necesario tener al menos un 5 en cada una de las prácticas para aprobar la asignatura.
- Un mínimo del 80% de asistencia para poder aprobar la convocatoria ordinaria.
- La asignatura COMPLETA estará suspensa si se descubre que un alumno o grupo ha copiado a otro (ambos estarán suspensos). Además, la universidad abrirá expedientes disciplinarios a todas las personas involucradas, pudiendo desembocar incluso en su expulsión.
- Está prohibido el uso del teléfono móvil en clase.

Convocatoria extraordinaria

- Para la convocatoria extraordinaria de Julio, se deben presentar los dos proyectos en su versión final.

BIBLIOGRAFÍA / WEBGRAFÍA

Bibliografía básica

Learning C# Programmingwithunity 3D por Okita, Alex

https://unity.com/es

Bibliografía recomendada

Learning C# bydevelopinggameswithunity 3D beginner's guide. Norton, Terry

MATERIALES, SOFTWARE Y HERRAMIENTAS NECESARIAS

Tipología del aula

Aula teórica

Equipo de proyección y pizarra

Materiales:

Ordenador personal

Software:

Unity