

GUÍA DOCENTE

DISEÑO DE SOFTWAREGRADO EN **INGENIERÍA DEL SOFTWARE**

MODALIDAD: A DISTANCIA

CURSO ACADÉMICO: 2023-2024

Denominación de la asignatura:	Diseño de Software
Titulación:	Ingeniería del Software
Facultad o Centro:	Centro Universitario de Tecnología y Arte Digital
Materia:	Ingeniería del Software
Curso:	2º
Cuatrimestre:	2
Carácter:	ОВ
Créditos ECTS:	6
Modalidad de enseñanza:	A distancia
Idioma:	Castellano
Profesor / Email:	Francisco Javier Fernandez Carrera / francisco.carrera@ext.live.u-tad.com Miguel Angel Mesas Uzal / miguel.mesas@u-tad.com
Página Web:	http://www.u-tad.com/

DESCRIPCIÓN DE LA ASIGNATURA

Descripción de la materia

Esta materia establece los conocimientos y técnicas necesarios para la correcta especificación, diseño e implementación de proyectos software atendiendo a las buenas prácticas y metodologías ingenieriles.

Descripción de la asignatura

Modelar y diseñar soluciones atendiendo a los compromisos de eficiencia, modularidad, calidad y mantenibilidad. Comprender y diseñar arquitecturas de software basadas en la orientación a objetos, mediante técnicas y patrones de diseño. Es una asignatura fundamental de cara a comprender cómo crear mejor software

COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

Competencias (genéricas, específicas y transversales)

COMPETIENCIAS BÁSICAS Y GENERALES

CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientosen un área de estudio que parte de la base de la educación secundaria general, yse suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados,incluye también algunos aspectos que implican conocimientos procedentes de lavanguardia de su campo de estudio.

CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocaciónde una forma profesional y posean las competencias que suelen demostrarse pormedio de la elaboración y defensa de argumentos y la resolución de problemasdentro de su área de estudio.

CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datosrelevantes (normalmente dentro de su área de estudio) para emitir juicios queincluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4: Que los estudiantes puedan transmitir información, ideas, problemas ysoluciones a un público tanto especializado como no especializado.

CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizajenecesarias para emprender estudios posteriores con un alto grado de autonomía.

- CG1 Capacidad para entender, planificar y resolver problemas a través deldesarrollo de soluciones informáticas.
- CG2 Desarrollo de soluciones informáticas respetuosas con el medio ambiente, losdeberes sociales y los recursos naturales, además de cumplir con la legislación y laética
- CG3 Conocimiento de los fundamentos científicos aplicables a la resolución deproblemas informáticos
- CG6 Integración, como ingeniero del software, en entornos de trabajomultidisciplinares demostrando capacidad de trabajo en equipo, versatilidad,flexibilidad, creatividad y respeto por el trabajo de los compañeros de otras áreas.
- CG9 Capacidad para aprender, modificar y producir nuevas tecnologíasinformáticas
- CG10 Uso de técnicas creativas para la realización de proyectos informáticos

COMPETENCIAS ESPECÍFICAS

- CE10 Capacidad para manejar un gestor de versiones de código y generar ladocumentación de una aplicación de forma automática.
- CE18 Capacidad para diseñar la arquitectura de una aplicación informáticaorientada a objetos empleando los patrones de diseño más adecuados eintegrándolos en la arquitectura completa.
- CE19 Capacidad para concebir, diseñar a través de lenguajes gráficos eimplementar una aplicación informática empleando distintas metodologías dedesarrollo, desde la concepción del producto hasta su desarrollo final pasando porla definición de sus fases e iteraciones
- CE20 Capacidad para testar el funcionamiento y funcionalidad de una aplicacióninformática, elaborando planes de pruebas y empleando técnicas de diseño yprogramación orientado a las pruebas

CE22 - Conocimiento de las técnicas e implicaciones del mantenimiento deaplicaciones informáticas incluyendo aquellas que utilizan principios de ingenieríainversa para entender y modificar un software cuya estructura se descono

Resultados de aprendizaje

Al acabar la titulación, el graduado o graduada será capaz de:

- Conocer los lenguajes de especificación formal
- Ser capaz de identificar y usar patrones de diseño en la resolución de problema
- Manejar las técnicas de refactorización
- Entender el ciclo de vida del software
- Entender y aplicar las metodologías waterfall en el desarrollo
- Entender y aplicar Scrum en el desarrollo

CONTENIDO

Lenguajes de descripción de software

Patrones de diseño

Técnicas de refactorización

TEMARIO

TUnidad 1: Introducción al Diseño Software

Unidad 2: Patrones de comportamiento 1

Unidad 3: Patrones de comportamiento 2

Unidad 4: Patrones de creación

Unidad 5: Patrones estructurales

Unidad 6: Refactorización

ACTIVIDADES FORMATIVAS Y METODOLOGÍAS DE APRENDIZAJE

Actividades formativas

Actividad Formativa	Horas totales	Horas síncronas
Sesiones teóricas virtuales síncronas	2,00	2
Sesiones teóricas virtuales asíncronas	21,00	0
Sesiones prácticas virtuales síncronas	4,00	4

Sesiones prácticas virtuales asíncronas	17,00	0
Debate y discusión oral y/o escrita.	8,00	0
Tutorías	4,00	4
Estudio independiente y trabajo autónomo del alumno	48,00	0
Elaboración de trabajos (en grupo o individuales	30,00	0
Actividades de Evaluación	10,00	10
Test de autoevaluación	6,00	0
Prácticas externas	0,00	0
Preparación y defensa virtual del TFG	0,00	0
Seguimiento de proyectos	0,00	0
TOTAL	150	20

Metodologías docentes

Método expositivo o lección magistral

Aprendizaje de casos

Aprendizaje basado en la resolución de problemas

Aprendizaje cooperativo o colaborativo

Aprendizaje por indagación

Metodología Flipped classroom o aula invertida

Gamificación

Just in time Teaching (JITT) o aula a tiempo

Método expositivo o lección magistral

Método del caso

Aprendizaje basado en la resolución de problemas

Aprendizaje cooperativo o colaborativo

Aprendizaje por indagación

Metodología flipped classroom o aula invertida

Gamificación

DESARROLLO TEMPORAL

Presentación - semana 1

Unidad 1 - semana 2-3

Unidad 2 - semana 4-5

Unidad 3 - semana 6-7

Unidad 4 - semana 7-8

Unidad 5 - semana 9-10

Unidad 6 - semana 11-12

Repaso - semana 13-14

Evaluación - semana 15

SISTEMA DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	VALORACIÓN MÍNIMA RESPECTO A LA CALIFICACIÓN FINAL (%)	VALORACIÓN MÁXIMA RESPECTO A LA CALIFICACIÓN FINAL (%)
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	10	20
Evaluación de trabajos, proyectos, informes, memorias	10	20
Prueba Objetiva	60	70

CRITERIOS ESPECÍFICOS DE EVALUACIÓN

ACTIVIDAD DE EVALUACIÓN	CONVOCATORIA ORDINARIA	CONVOCATORIA EXTRAORDINARIA
Evaluación de la participación en clase, en prácticas o en proyectos de la asignatura	20	10

Evaluación de trabajos, proyectos, informes, memorias		20
Prueba Objetiva	60	70

Consideraciones específicas acerca de la evaluación

Será necesario que obtener una nota mínima de 4 puntos (sobre 10) en la prueba final presencial para que se realice la media con las actividades formativas.

BIBLIOGRAFÍA / WEBGRAFÍA

Bibliografía Básica:

- Freeman, E.; Freeman, E.; Bates, B. y Sierra, K. (2004); HEAD FIRST DESIGN PATTERNS; Editorial. O'Reilly; ISBN: 0596007124
- Debrauwer, L. (2013); PATRONES DE DISEÑO EN JAVA: LOS 23 MODELOS DE DISEÑO: DESCRIPCION Y SOLUCION ILUSTRADAS EN UML 2 Y JAVA; Editorial: ENI; ISBN: 9782746086456
- Fowler, M. (1999); REFACTORING: IMPROVING THE DESIGN OF EXISTING CODE; Editorial: ADDISON-WESLEY; ISBN: 9780201485677

Bibliografía Recomendada:

- Gamma, E.; Johnson, R.; Helm, R. y Vlissides, J. (1994); DESIGN PATTERNS: ELEMENTS OF REUSABLE OBJECT-ORIENTED SOFTWARE; Addison-Wesley; ISBN: 0-201-63361-2
- Shalloway, Alan; Trott, James; Design Patterns Explained: A New Perspective on Object-Oriented. Addison-Wesley Professional (2001). ISBN 10: 0201715945 ISBN 13: 9780201715941
- Steven John Metsker; The design patterns Java workbook; Addison Wesley, 2002. ISBN: 0-201-74397-3
- James W. Cooper; Java™ Design Patterns: A Tutorial; Addison Wesley, 2000. ISBN: 0-201-48539-7

MATERIALES, SOFTWARE Y HERRAMIENTAS NECESARIAS

Materiales:

PC personal, con windows, linux o Mac

Software:

Eclipse